
The Lane Table Method Of Constructing LR(1) Parsers 
David Pager 

Department of Information and Computer Science 
University of Hawaii at Manoa  

POST Building 317, 1680 East-West Road 
Honolulu, HI 96822 
+1 (808) 292-5629 

pagerd001@hawaii.rr.com 

 

Xin Chen 
Department of Information and Computer Science 

University of Hawaii at Manoa  
POST Building 317, 1680 East-West Road 

Honolulu, HI 96822 
+1 (808) 226-3584 

chenx@hawaii.edu 

 

 

ABSTRACT 

The lane-tracing algorithm is a reduced-space LR(1) parser 

generation algorithm. The previous version of lane-tracing 

algorithm regenerates states involved in reduce/reduce conflict by 

employing the practical general method. In this paper we describe 

an alternative lane-tracing approach, which regenerates states 

based on the lane table method. We discuss the details of this new 

algorithm, study its efficiency compared to existing methods, and 

point out that this method is better suited when extending from 

LR(1) to LR(k) parser generation. 

Categories and Subject Descriptors 

D.3.4 [Programming Languages]: Processors – code generation, 

parsing, translator writing systems and compiler generators  

General Terms 

Algorithms, Languages, Theory. 

Keywords 

LR(1), Parser Generation, Lane Table, Lane-tracing, Performance. 

1. INTRODUCTION 

1.1 Overview  
LR parser generation is more advantageous in many aspects than 

SLR, LALR and LL methods, but was once too expensive in 

performance. With each significant increment in computer 

processing speed and storage capacity in the last 30 years, there 

have been wide press discussion on how such developments could 

be put to use. LR(1) parser generators employing reduced-space 

methods, rather than the original Knuth canonical LR(1) 

algorithm [1], can now work efficiently in space and time not 

much more expensive than LALR(1) parser generators [10]. 

But just as the speed and capacity of computers have risen, so 

have the complexity and scope of computer languages, from the 

early versions of Fortran and Basic to the languages that are 

current today. Examples may include gigantic grammars 

employed in combination with other techniques for the purpose of 

natural language processing applications. 

This work describes a new efficient lane-tracing LR(1) algorithm 

based on the lane table method, which improves our 

understanding of LR(1) parser generation, and opens a new door 

to efficient LR(k) parser generation [11]. 

1.2 Related Algorithms  
The first practical application of the LR algorithm was by 

DeRemer [2] for the LALR(1) subset of LR(1) grammars.  

The practical general method (PGM) of Pager [6] is a well-known 

LR(1) parser generation algorithm. It uses a merging process, is 

conceptually simple, and has been implemented into a number of 

parser generators, such as LR (1979) [12], LRSYS (1985) [13], 

Menhir (2004) [14] and Hyacc (2008) [9]. 

The lane-tracing algorithm is another LR(1) parser generation 

algorithm by Pager [4][5]. It generates a LR(1) parser generator 

using a splitting approach. It is more complex than the PGM 

method. The only known implementations are by Pager in 

assembly language on OS 360 (1977) [5], and in Hyacc (2008) 

recently.  

Other works along the same lines of splitting approach include 

those by Spector [7][8], which was once implemented in the 

Muskox parser generator (1994) [15]. 

The partitioning algorithm of Korenjak [3] is different from the 

above methods. It divides a grammar into multiple parts, applies 

LR(1) parser generation to each part, and then combines the 

output together. Korenjak used Knuth’s canonical method in this 

framework, although in theory he can also use other methods such 

as those by Pager and Spector. 

2. THE LANE TABLE METHOD 
We define the following terms for the discussion in this paper. A 

grammar for a language L is defined as a 4-tuple G = (N, Σ, P, S). 

Here N is a set of nonterminal symbols, Σ is a set of terminal 

symbols disjoint from the set N, P is a set of productions, and S is 

the start symobl from which the production rules originate from. 

Following the LR algorithm, we can obtain a parsing machine for 

the grammar, which is composed of states. A state contains one or 

multiple configurations. A configuration is of the form [A � α ● 

X β, ψ], where A is a nonterminal, X is a nonterminal or terminal, 

α and β are strings of terminals or nonterminals. The dot ● is 

called the marker of the configuration. We optionally use square 

brackets ([ and ]) here only to make it visually more clear. The 

symbol on the right side of the marker, in this case X, is called the 
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scanned symbol of the configuration. A � α X β is the production 

part of the configuration. ψ is the set of terminals that can appear 

immediately after X, and is called the context of the configuration. 

The symbol involved in the transition from one state to the other 

is called the transition symbol. If the transition symbol is X, the 

target state is called the X-successor of the source state. For the 

configuration A � α ● X β, a configuration of the form A � α X 

● β is called its transition successor, and a configuratin of the 

form X � ● η is called its immediate successor. A lane in a 

parsing machine is a sequence of configurations ξ1, ξ2, …, ξn, 

where for i = 0 to n-1, ξi+1 is the immediate or transition successor 

of ξi. The state containing ξ1 is called a lanehead state. For 

example, in Figure 6, configurations G � x ● W a, W � ● U X C, 

W � U ● X C, X � ● k t, X � k ● t, X � k t ● form a lane, and 

state B is a lanehead state because it contains the first 

configuration of the lane. Figure 2 and Figure 6 are examples of 

(part of a complete) parsing machines. 

2.1 The Lane-Tracing Algorithm 
Pager’s lane-tracing algorithm [4][5] employs a two-phase 

approach, as shown in Algorithm 1. It starts by generating the 

LR(0) parsing machine, then proceeds to lane-tracing to resolve 

conflicts. This splitting process is divided into two phases, as 

shown in Figure 1 below. The first phase starts from inadequate 

states (states that contain shift/reduce and reduce/reduce conflicts) 

in the LR(0) parsing machine, traces back the configurations until 

a configuration where only non-NULL contexts are generated. 

Phase 1 ends up with a LALR(1) parsing machine. If this resolves 

all the conflicts then we stop here. Otherwise, phase 2 is used to 

split remained inadequate states to resolve reduce/reduce 

conflicts, and results in a LR(1) parsing machine.  

 

Figure 1. The two phases of the Lane-Tracing Algorithm 

 

Algorithm 1. The Lane-Tracing Algorithm 

Lane_Tracing_Phase1(); 

Resolve_Conflicts(); 

If not all inadequate states are resolved then 

   Lane_Tracing_Phase2(); 

        Resolve_ Conflicts(); 

 
The purpose of phase 2 is to split the states that contain 

reduce/reduce conflicts.  The phase 2 in Pager’s previous work 

[4][5] is based on the practical general method (PGM). However, 

here we will present an alternative algorithm for phase 2, which is 

based on a lane table: a table constructed from the conflicting 

lanes during lane-tracing. Taken together with phase 1, this new 

method of phase 2 will, as before, produce a conflict-free LR(1) 

parser for all LR(1) grammars. Let us first look at an example on 

how the phase 1 of lane-tracing algorithm works. 

Example 1. Given grammar G1: E � a X d | b X c | b Y d, X � e 

X | e, Y � e Y | e. The relevant part of LR(0) parsing machine is 

shown in Figure 2. State D is inadequate, because it contains a 

reduce/reduce conflict on two configurations: [X � e ●] and [Y 

� e ●]. To apply lane-tracing phase 1 to resolve the conflict, we 

generate relevant contexts. The conflict can be resolved if the 

generated contexts are different. 

Lane-tracing for phase 1 is shown in Figure 3. The lanes that 

generate contexts for [X � e ●]  is shown in (a). The lanes that 

generate contexts for [Y � e ●]  is shown in (b). After lane-

tracing, we obtain the corresponding LALR(1) parsing machine, 

the relevant part of which is shown in Figure 4. Now the context 

for configuration [X � e ●] is {c, d}, the context for configuration 

[Y � e ●] is also {c, d}. The conflict still exists, awaiting further 

processing by Phase 2. 

 

Figure 2. LR(0) parsing machine of grammar G1 

 

Figure 3. Lane-tracing on conflict configurations 

 

Figure 4. LALR(1) parsing machine of grammar G1 

 



2.2 Phase 2 Of The Lane-Tracing Algorithm 
 

Algorithm 2. Lane_Tracing_Phase2() 

Get_LaneHead_List(); 

Phase2_PGM() or Phase2_LaneTable(); 

 
As shown in Algorithm 2, the first step of phase 2 is to get a list of 

lanehead states. After phase 1, we have obtained a parsing 

machine with inadequate states. Next we need to find out a list of 

states, from which lanes start and eventually lead to the 

unresolved reduce/reduce conflicts in the inadequate states. Then 

we need to regenerate the states on the conflicting lanes (the lanes 

that we have traced in Phase 1). 

When new states are generated we check if we can combine them, 

or need to split by making a new copy. This process will remove 

the reduce/reduce conflicts if the grammar is LR(1). The previous 

lane-tracing algorithm uses the PGM algorithm for this purpose, 

which we call Phase2_PGM(). Phase2_LaneTable() is the new 

approach. We give an example of applying Phase2_PGM() below. 

Example 2. Apply Phase2_PGM() on grammar G1. The lanehead 

state list is {B, C}, because lanes originate from states B and C, 

and lead to the unresolved reduce/reduce conflict in state D.  

When applying Phase2_PGM(), we generate context closure for 

each of the lanehead states, and propagate the context change to 

successor states involved in reduce/reduce conflicts, applying the 

PGM method to combine or split successor states as necessary.  

The e-successor of state B and state C is the inadequate state that 

contains the reduce/reduce conflict in the LALR(1) parsing 

machine. We generate a new e-successor of state B, which is state 

D. Next we generate a new e-successor of state C, which is state 

D’. We apply the PGM method to see if we can combine state D’ 

into state D. The answer is no because that causes a reduce/reduce 

conflict. Therefore we keep state D’ as a split new state. The 

resulted LR(1) parsing machine is shown in Figure 5. In this 

LR(1) parsing machine, the reduce/reduce conflict is resolved. 

 

Figure 5. LR(1) parsing machine of grammar G1 after 

applying Phase2_PGM() 

 

2.3 The Lane Table Method 
Now we discuss the new approach: Phase2_LaneTable(). Lane-

tracing based on a lane table is another way of splitting states to 

remove inadequate states. The idea is that, using the lane table 

constructed, we check the local context information of the 

regenerated state group to see if there is a need to split. 

Let the conflicting actions at the inadequate state be π1, π2, ..., πr. 

If a state S contains configurations that for 1 ≤ i ≤ r, generate a set 

of contexts Ci along a lane leading to πi, then the collection of 

contexts generated by S is defined as the set {(Ci,  i) | 1 ≤ i ≤ r}. 

Note that if the sets {Ci | 1 ≤ i ≤ r} are not pair-wise disjoint, then 

the grammar is not LR(1). 

The collection of contexts associated with any state S is initially 

the collection of contexts it generates. The criterion according to 

which regenerated states may be combined is as follows. 

Let {S1, …, St} be a set of connected regenerated states, and let 

the (same) collection of contexts associated with S1, …, St be 

{(Ai, i) | 1 ≤ i ≤ r} in each case. Now we regenerate a state T that 

is a successor of one of S1, …, St : 

1) If there is an existing copy of state T whose associated 

collection of contexts is {(Bi, i) | 1 ≤ i ≤ r} and the collection 

of the set of states {(Ai U Bi) | 1 ≤ i ≤ r} are pair-wise 

disjoint, then this existing copy of state T is taken as the 

successor involved, and the collection of contexts associated 

with {S1, …, St, T} is defined to be {(Ai U Bi, i) | 1 ≤ i ≤ r}. 

2) Otherwise, a new copy T’ of T is regenerated as the 

successor involved, and if the collection of contexts 

generated by T is {(Bi’, i) | 1 ≤ i ≤ r}, then the collection of 

contexts associated with {S1, …, St, T’} is defined to be {(Ai 

U Bi’, i) | 1 ≤ i ≤ r}.  

Note that if the sets {(Ai U Bi’, i) | 1 ≤ i ≤ r} are not pair-wise 

disjoint, then the grammar is not LR(1).  

Next we show two examples applying the lane table method. 

Example 3. Given grammar G2: G → x W a | x V t | y W b | y V t 

| z W r | z V b | u U X a | u U Y r, W → U X C, V → U Y d, X → 

k t U X P | k t, Y → k t U Y u | k t, U → U k t | s, E → a | b | c | v, 

C → c | w, P → z. Let us derive its LR(1) parsing machine using 

the lane table method  

Part of the LR(0) parsing machine of grammar G2 involved in 

conflicting lanes is shown in Figure 6. It contains reduce/reduce 

conflicts at state I on configurations π1, π2, π3. At state I, 

configurations π1, π2, π3 are defined as: π1 : U → U K t, π2 : Y → 

k t, π3 : X → k t. 

Figure 6 shows the states that result in the reduce/reduce conflict 

at state I: A, B, … J. The configurations of each state are also 

shown. Arrows represent the transitions between the states. 

Transition symbols are labelled on the arrows. Text on the left 

side of some states, for example, “a for π3” on the left side of state 

B, means that the configuration to the right of it [G � x ● W a) 

generates context {a} for configuration π3. 

Figure 7 depicts the states involved in traced lanes and shows how 

they are connected to each other. The lanes are shown in the 

forward direction. The information collected is stored into a lane 

table as in Table 1.  



 

 

Figure 6. States on the conflicting lanes of the LR(0) parsing machine of grammar G2 

 

  

Figure 7. Conflicting lanes from lane-tracing of grammar G2 

Table 1. Lane table constructed from lane-tracing in Figure 7 
 

State π1 π2 π3 Connected to 

B * k  a {G} 

C * k  b {G} 

D * k  r {G} 

E * k   {F} 

F  r a {H} 

G  d c, w {H} 

H    {I} 

I k   {J} 

J  u  {H} 
 

* means the labeled state is a lanehead state, i.e., it is a state from 

which lane(s) start, but do not pass through. For example, states 

B, C, D and E are where lane(s) start, and they are not in the 

middle or end of any path. Therefore they are all lanehead states. 

State F is at the start of lanes for π1 and π2, but it is in the middle 

of lanes for π1. Therefore it is not a lanehead state. 



The example of combining regenerated states is given below. The 

regeneration starts from lanehead states B, C, D and E. Note that 

no states other than states B, C, …, J are regenerated, except for 

their copies when split is needed. 

Step 1: Initially show the collection of contexts associated with 

each state (i.e., the collection of context generated by the state). 

For example, for state B, its contexts are ({k}, 1), ({a}, 3). This 

means state B generates context set {k} for configuration π1, and 

context set {a} for configuration π3. 

 

Step 2: Start from state B, first add its successor state G to the 

collection. The collection of contexts associated with {B, G} is: 

({k}, 1), ({d}, 2), ({a, c, w}, 3). 

 

Step 3: Add the successor of state G: state H. The collection of 

contexts associated with {B, G, H} is: ({k}, 1), ({d}, 2), ({a, c, 

w}, 3). 

 

Step 4: Add the successor of state H: state I. The collection of 

contexts associated with {B, G, H, I} is: ({k}, 1), ({d}, 2), ({a, c, 

w}, 3). 

 

Step 5: Add the successor of state I: state J. The context sets 

associated with {B, G, H, I, J} is: ({k}, 1), ({d, u}, 2), ({a, c, w}, 

3). 

 

Step 6: Add the successor of state J: state H. State H is already in 

the set. The context sets associated with {B, G, H, I, J} is: ({k}, 

1), ({d, u}, 2), ({a, c, w}, 3). 

 

Step 7: State H is already in this set of states. So find the next 

lanehead state after B in the lane table and see if it is possible to 

add it to this set of states, which is state C. The context sets 

associated with {B, C, G, H, I, J} is: ({k}, 1), ({d, u}, 2), ({a, b, c, 

w}, 3). 

 

Step 8: Successor state G of state C is in this set of states already. 

So find the next lanehead state after C in the lane table and see if 

it is possible to add it to this set of states, which is state D. The 

context sets associated with {B, C, D, G, H, I, J} is: ({k}, 1), ({d, 

u}, 2), ({a, b, c, r, w}, 3). 

 

Step 9: Successor state G of state D is in this set of states already. 

So find the next state after D in the table and see if it is possible to 

add it to this set of states, which is state E. But adding E to this set 

will cause a conflict in the associated context sets, which becomes 

evident in step 11 below. So E must be put into a new set of 

states. The collection of contexts associated with {E} is: ({k}, 1). 

 

Step 10: Add the successor of state E: state F. The collection of 

contexts associated with {E, F} is: ({k}, 1), ({r}, 2), ({a}, 3). 

 

Step 11: Add the successor of state F: state H. Now state H is 

already in the first set of states. So adding H to the current set of 

states means we need to combine the new set of states with the old 

one. But then the combined contexts is: ({k}, 1), ({d, r, u}, 2), 

({a, b, c, r, w}, 3). This is not pair-wise disjoint because the 

terminal symbol “r” is in sets for configurations 2 and 3. So we 

have to keep the current set separate from the old one, and create 

a copy of state H to insert into the new set. The collection of 

contexts associated with {E, F, H’} is: ({k}, 1), ({r}, 2), ({a}, 3). 

 

Step 12: Add the successor of state H’, which is I. Similarly, we 

have to create a copy of state I to insert into the new set to avoid 

merging with the old set, which causes the failure of pair-wise 



disjointness of the context sets. The collection of contexts 

associated with {E, F, H’, I’} is: ({k}, 1), ({r}, 2), ({a}, 3). 

 

Step 13: Add the successor of state I’, which is J. For the same 

reason, we need to create a copy of J. The collection of contexts 

associated with {E, F, H’, I’, J’} is: ({k}, 1), ({r, u}, 2), ({a}, 3). 

 

Step 14: Add the successor of state J’, which is H. For the same 

reason, we need a copy of H. But there exists a copy of H in this 

set already, so we just use it. The collection of contexts associated 

with {E, F, H’, I’, J’} is: ({k}, 1), ({r, u}, 2) ({a}, 3). 

 

So finally the result of combining the regenerated states is shown 

below. The associated context sets is ({k}, 1), ({d, u}, 2), ({a, b, 

c, w}, 3) for set 1, and ({k}, 1), ({r, u}, 2), ({a}, 3) for set 2. 

 

The portion of the parsing machine involved in lane-tracing given 

previously has now been transformed into Figure 8. 

 

Example 4. Back to given grammar G1, we have seen how its 

reduce/reduce conflict can be resolved using the PGM method in 

phase 2. Let us apply the lane-table method of phase 2 to its 

LALR(1) parsing machine. The obtained conflicting lanes are 

shown in Figure 9. 

The lane table is shown in Table 2. Follow the same procedure as 

in Example 3, we can obtain two sets for the finally LR(1) parsing 

machine of grammar G1, as shown in Figure 10. The associated 

context sets is ({d}, 1), ({c}, 2) for set 1, and ({c}, 1), ({d}, 2) for 

set 2. This is identical to the result of Phase2_PGM()method (as 

shown in Figure 5). 

 

 

 

Figure 8. Portion of LR(1) parsing machine involved in lane-

tracing of grammar G2 

 

Figure 9. Conflicting lanes from lane-tracing of grammar G1 

 

Figure 10. LR(1) parsing machine obtained by lane table 

method of grammar G1 

Table 2.  Lane table constructed in lane-tracing of Figure 9 

State π1 π2 Connected to 

B * d c {D} 

C * c d {D} 

D    
 

 



3. IMPLEMENTATION IN HYACC AND 

EXTENSION TO LR(K) 
We have implemented the lane table based lane-tracing algorithm 

into LR(1) parser generator Hyacc. It proves correct and efficient. 

It is also used to implement LR(k) [11], as shown in Figure 11. 

The acronyms used in Figure 11 are defined in section 4. 

This algorithm is advantageous to extend to LR(k) because it only 

works on those configurations and states relevant to resolving 

reduce/reduce conflicts. The practical general method, however, 

needs to handle the entire context tuple for all the configurations 

and states, and thus infeasible for increasing k. 

 

Figure 11. The LR(k) implementation stack In Hyacc 

4. PERFORMANCE STUDY 
In this section we study the performance of the lane-table based 

lane-tracing algorithm by comparing it with other relevant 

algorithms. The test machine has a 1.7 GHz Intel Pentium CPU 

and 1 GB RAM, and OS is Fedora core 4.0. For the 

measurements, time is in sec (second) and memory is in MB 

(megabyte). The grammars of 13 programming languages are used 

as input. These grammars are from [16] and are modified slightly 

to fit in input format.  

The 5 algorithms compared are: 1) Knuth LR(1): Knuth canonical 

LR(1) algorithm. 2) PGM LR(1): LR(1) algorithm based on the 

practical general method. 3) LT LR(1) w/ PGM: LR(1) algorithm 

based on lane-tracing, use PGM in phase 2. 4) LT LR(1) w/ LTT: 

LR(1) algorithm based on lane-tracing, use lane table in phase 2. 

5) Bison LALR(1): LALR(1) algorithm as in Bison 2.3 [3]. The 3 

algorithms in 2), 3) and 4) are called reduced-space LR(1) parser 

generation algorithms, as opposed to the original Knuth canonical 

LR(1) algorithm in 1). Except LT LR(1) w/ LTT, the data of the 

other 4 algorithms were shown previously [10]. 

4.1 Parsing Table Size Comparison 
Table 3 shows comparison of the size of the generated parsing 

tables. Figure 12 visualizes the data. The parsing machine 

generated by LT LR(1) w/ LTT has the same size as by LT LR(1) 

w/ PGM in most cases. LT LR(1) w/ PGM always results in the 

smallest LR(1) parsing machine. LALR(1) parser machine size is 

similar. Knuth canonical LR(1) parsing machine is much bigger. 

4.2 Running Time Comparison 
Table 4 shows the running time comparison. Figure 13 visualizes 

the data. LT LR(1) w/ LTT takes slightly longer time than LT 

LR(1) w/ PGM. Both are faster than PGM LR(1) in most cases. 

As expected, the running time of the three reduced-space LR(1) 

algorithms are on the same level as Bison LALR(1), and much 

faster than Knuth LR(1). 

4.3 Memory Usage Comparison 
Table 5 shows the memory usage comparison. Figure 14 

visualizes the data. LT LR(1) w/ LTT always uses equal or less 

memory than LT LR(1) w/ PGM. PGM LR(1) memory usage can 

be lower or higher than the two lane-tracing methods. The three 

reduced-space LR(1) algorithms often use slightly more memory 

than LALR(1), and use much less memory than Knuth LR(1). 

 

Figure 12. Parsing table size comparison 

 

 

Figure 13. Running time comparison 

 

 

Figure 14. Memory usage comparison 



Table 3.  Parsing table size comparison 

 Hyacc Bison 

Grammar Knuth 

LR(1) 

PGM 

LR(1) 

LT R(1) 

w/ PGM 

LT LR(1)  

w/  LTT 

LALR(1) 

Ada 12786 873 860 860 861 

Algol 60 1538 274 272 294 273 

C 1572 349 349 349 350 

Cobol 2398 657 657 657 658 

C++ 5.0 9785 1404 1261 1496 1257 

Delphi 4215 609 609 945 610 

Ftp 210 200 200 200 201 

Grail 719 193 193 193 194 

Java 1.1 2479 439 428 428 429 

Matlab 588 174 174 174 175 

Pascal 2245 418 412 412 413 

Turbo Pascal 1918 394 386 386 387 

Yacc 153 128 128 128 129 

 

Table 4.  Running time comparison (sec) 

 Hyacc Bison 

Grammar Knuth 

LR(1) 

PGM 

LR(1) 

LT LR(1)  

w/ PGM 

LT LR(1)  

w/ LTT 

LALR(1) 

Ada 1.883 0.406 0.172 0.173 0.155 

Algol 60 0.606 0.290 0.509 0.531 0.174 

C 1.047 0.420 0.192 0.192 0.225 

Cobol 0.234 0.127 0.115 0.113 1.690 

C++ 5.0 3.529 1.779 1.261 2.045 0.705 

Delphi 1.141 0.335 0.364 0.945 0.638 

Ftp 0.016 0.017 0.017 0.017 0.268 

Grail 0.051 0.024 0.020 0.021 0.156 

Java 1.1 1.552 1.026 0.350 0.352 0.339 

Matlab 0.351 0.189 0.117 0.117 0.120 

Pascal 0.504 0.174 0.066 0.067 0.246 

Turbo Pascal 0.305 0.098 0.053 0.053 0.204 

Yacc 0.018 0.026 0.016 0.017 0.157 

 

Table 5.  Memory usage comparison (MB) 

 Hyacc Bison 

Grammar Knuth  

LR(1) 

PGM 

LR(1) 

LT LR(1)  

w/ PGM 

LT LR(1)  

w/ LTT 

LALR(1) 

Ada 95.1 7.9 7.9 7.9 4.0 

Algol 60 16.0 4.2 6.4 5.4 3.9 

C 18.9 6.0 5.2 5.2 4.0 

Cobol 19.1 6.3 6.5 6.5 4.0 

C++ 5.0 122.7 23.9 39.1 34.4 4.3 

Delphi 37.4 6.5 14.5 11 3.9 

Ftp 2.8 2.8 2.8 2.8 3.9 

Grail 5.3 2.9 2.9 2.9 3.8 

Java 1.1 35.6 7.8 6.3 6.3 3.8 

Matlab 7.8 3.9 3.5 3.5 3.8 

Pascal 18.6 4.9 4.8 4.8 3.9 

Turbo Pascal 13.8 4.3 4.5 4.5 3.9 

Yacc 2.6 2.6 2.6 2.6 3.9 

 

As a summary, compared to the other two reduced space LR(1) 

algorithms, in a small number of cases LT LR(1) w/ LTT may 

generate a parsing machine slightly larger and use a little more 

time, but it generally uses less memory. Overall it is another 

efficient reduced-space LR(1) parser generation algorithm. 

5. CONCLUSION 
In this paper we have presented the lane table method to construct 

LR(1) parsers, which is an alternative lane-tracing algorithm. We 

described the details of the algorithm and showed examples to 

demonstrate its application. Empirical study shows that the 

algorithm is another efficient reduced-space LR(1) parser 

generation algorithm. The lane table method is also more suitable 

when extend from LR(1) to LR(k) parser generation. It has been 

implemented into parser generator Hyacc for LR(1) and LR(k). 

6. REFERENCES 
[1] Donald E. Knuth. On the translation of languages from left to 

right. Information and Control, 8(6):607–639, 1965.  

[2] Frank L. DeRemer. Practical translators for LR(k) languages. 

Ph.D. thesis, MIT, Cambridge, 1969. 

[3] A. J. Korenjak. Efficient LR(1) processor construction. In 

Proceedings of the first annual ACM symposium on Theory 

of computing, pages 191– 200, Marina del Rey, California, 

United States, 1969. 

[4] David Pager. The lane tracing algorithm for constructing 

LR(k) parsers. In Proceedings of the fifth annual ACM 

symposium on Theory of computing, pages 172 – 181, 

Austin, Texas, United States, 1973. 

[5] David Pager. The lane-tracing algorithm for constructing 

LR(k) parsers and ways of enhancing its efficiency. 

Information Sciences, 12: 19-42, 1977. 

[6] David Pager. A practical general method for constructing 

LR(k) parsers. Acta Informatica, 7: 249-268, 1977. 

[7] David Spector. Full LR(1) parser generation. ACM SIGPLAN 

Notices, 58-66, 1981 

[8] David Spector. Efficient full LR(1) parser generation. ACM 

SIGPLAN Notices, 23(12), 143-150, 1988. 

[9] Xin Chen. Open Source Project: LR(1) Parser Generator 

Hyacc. 2008. Available: http://sourceforge.net/projects/hyacc 

[10] Xin Chen and David Pager. Full LR(1) parser generator 

Hyacc and study on the performance of LR(1) algorithms. In 

Proceedings of The Fourth International C* Conference on 

Computer Science and Software Engineering (C3S2E '11), 

83-92. Montreal, QC, Canada, May 2011. ACM Press. 

[11] Xin Chen, David Pager. The Edge-Pushing LR(k) Algorithm. 

In Proceedings of International Conference on Software 

Engineering Research and Practice, pages 490-495. Las 

Vegas, USA, July 2011.  

[12] Charles Wetherell and A. Shannon. LR automatic parser 

generator and LR(1) parser. Technical Report UCRL-82926 

Preprint, July 1979. 

[13] LRSYS. (1991) Available: 

http://www.nea.fr/abs/html/nesc9721.html 

[14] Francois Pottier and Yann Regis-Gianas. Parser Generator 

Menhir. (2004) Available: 

http://cristal.inria.fr/~fpottier/menhir/ 

[15] Boris Burshteyn. MUSKOX Algorithms. (1994) Available: 

http://compilers.iecc.com/comparch/article/94-3-067 

[16]  “Yacc-keable” Grammars. Available: 

http://www.angelfire.com/ar/CompiladoresUCSE/COMPILE

RS.html 


