
LR(1) Parser Generator Hyacc

X. Chen
1
, D. Pager

1

1Department of Information and Computer Science, University of Hawaii at Manoa, Honolulu, HI, USA

Abstract - The space and time cost of LR parser generation

is high. Robust and effective LR(1) parser generators are

rare to find. This work employed the Knuth canonical

algorithm, Pager’s practical general method, lane-tracing

algorithm, and other relevant algorithms, implemented an

efficient, practical and open-source parser generator Hyacc

in ANSI C, which supports full LR(0)/LALR(1)/LR(1) and

partial LR(k), and is compatible with Yacc and Bison in

input format and command line user interface. In this paper

we introduce Hyacc, and give a brief overview on its

architecture, parse engine, storage table, precedence and

associativity handling, error handling, data structures,

performance and usage.

Keywords: Hyacc, LR(1), Parser Generator, Compiler,

Software tool

1 Introduction

 The canonical LR(k) algorithm [1] proposed by Knuth

in 1965 is a powerful parser generation algorithm for

context-free grammars. It was potentially exponential in time

and space to be of practical use. Alternatives to LR(k)

include the LALR(1) algorithm used in parser generators

such as Yacc and later Bison, and the LL algorithm used by

parser generators such as ANTLR. However, LALR and LL

are not as powerful as LR. Good LR(k) parser generator

remains scarce, even for the case k = 1.

 This work has developed Hyacc, an efficient and

practical open source full LR(0)/LALR(1)/LR(1) and partial

LR(k) parser generation tool in ANSI C. It is compatible

with Yacc and Bison. The LR(1) algorithms employed are

based on 1) the canonical algorithm of Knuth [1], 2) the

lane-tracing algorithm of Pager [2][3], which reduces

parsing machine size by splitting from a LALR(1) parsing

machine that contains reduce-reduce conflicts, and 3) the

practical general method of Pager [4], which reduces parsing

machine size by merging compatible states from a parsing

machine obtained by Knuth’s method. The LR(0) algorithm

used in Hyacc is the traditional one. The LALR(1) algorithm

used in Hyacc is based on the first phase of the lane-tracing

algorithm. LR(0) and LALR(1) are implemented because

Pager’s lane-tracing algorithm depends on these as the first

step. The LR(k) algorithm is called the edge-pushing

algorithm [5] based on recursively applying the lane-tracing

process, and works for a subclass of LR(k) grammars. As a

side optimization, Hyacc also implemented the unit

production elimination algorithm of Pager [6] and its

extension [5].

2 The Hyacc Parser Generator

2.1 Overview

 Hyacc is pronounced as “HiYacc”. It is an efficient and

practical parser generator written from scratch in ANSI C,

and is easy to port to other platforms. Hyacc is open source.

Version 0.9 was released in January 2008 [7]. Version 0.95

was released in April 2009. Version 0.97 was released in

January 2011.

 Hyacc is released under the GPL license. But the

LR(1) parse engine file hyaccpar and LR(k) parse engine file

hyaccpark are under the BSD license so that the parser

generators created by Hyacc can be used in both open source

and proprietary software. This addresses the copyright

problem that Richard Stallman discussed in “Conditions for

Using Bison” of his Bison manuals [8][9].

 The algorithms employed by Hyacc are listed in the

introduction.

 Hyacc is compatible to Yacc and Bison in its input file

format, ambiguous grammar handling and error handling.

These directives from Yacc and Bison are implemented in

Hyacc: %token, %left, %right, %expect, %start, %prec.

Hyacc can be used together with the lexical analyser Lex. It

can generate rich debug information in the parser generation

process, and store these in a log file for review.

 If specified, the generated parser can record the parsing

steps in a file, which makes it easy for debugging and

testing. It can also generate a Graphviz input file for the

parsing machine. With this input, Graphviz can draw an

image of the parsing machine.

2.2 Architecture

 Hyacc first gets command line switch options, then

reads from the grammar input file. Next, it creates the

parsing machine according to different algorithms as

specified by the command line switches. Then it writes the

generated parser to y.tab.c, and optionally, y.output and

y.gviz. y.tab.c is the parser with the parsing machine stored

in arrays. y.output contains all kinds of information needed

by the compiler developer to understand the parser

generation process and the parsing machine. y.gviz can be

used as the input file to Graphviz to generate a graph of the

parsing machine.

Fig. 1. Relationship of algorithms from the point of view of

grammar processing 1

 Fig. 1 shows how the algorithms used in Hyacc are

structured from the point of view of grammar processing.

Input grammars can be processed by the merging path on the

left, first by the Knuth canonical algorithm and stop here, or

be further processed by Pager’s PGM algorithm.

 Input grammars can also be processed by the splitting

path on the right. First the LR(0) parsing machine is

generated. Next the LALR(1) parsing machine is generated

by the first phase of the lane-tracing algorithm. If reduce-

reduce conflicts exist, this is not a LALR(1) grammar, and

the second phase of lane-tracing is applied to generate the

LR(1) parsing machine. There are two methods for the

second phase of lane-tracing. One is based on the PGM

method [4], the other is based on the lane table method [10].

If LR(1) cannot resolve all the conflicts, this may be a LR(k)

grammar and the LR(k) process is applied.

 The generated LR(1) parsing machine may contain unit

productions that can be eliminated by applying the UPE

algorithm and its extension.

 Fig. 2 shows the relationship of the algorithms from the

point of view of implementation, i.e., how one algorithm is

based on the other.

1 Knuth LR(1) – Knuth canonical algorithm, PGM LR(1) – Pager’s

practical general method, LT LALR(1) – LALR(1) based on lane-

tracing phase 1, LT LR(1) w/ PGM – lane-tracing LR(1) algorithm

based on Pager’s practical general method, LT LR(1) w/ LTT –

lane-tracing LR(1) algorithm based on Pager’s lane table method,

UPE – Pager’s unit production elimination algorithm, UPT Ext –

Extension algorithm to Pager’s unit production elimination

algorithm.

Fig. 2. Relationship of algorithms from the point of view of

implementation

2.3 The LR(1) Parse Engine

 Similar to the yaccpar file of Yacc, the hyaccpar file is

the parse engine of Hyacc. The parser generation process

embeds the parsing table into hyaccpar. How the hyaccpar

LR(1) parse engine works is shown in Algorithm 1.

Algorithm 1: The hyaccpar LR(1) parse engine algorithm.2
1 Initialization:
2 push state 0 onto state_stack;

3 while next token is not EOF do {

4 S � current state;
5 L � next token/lookahead;
6 A � action of(S, L) in parsing table;
7 if A is shift then {
8 push target state on state_stack,
9 pop lookahead symbol;
10 update S and L;
11 } else if A is reduce then {
12 output code for this reduction;
13 r1 � LHS symbol of reduction A;
14 r2 � RHS symbol count of A;
15 pop r2 states from state_stack,
16 update current state S;
17 Atmp � action for (S, r1);
18 push target goto state Atmp to
 state_stack;
19 } else if A is accept then {
20 if next token is EOF then {
21 is valid accept, exit;
22 } else {
23 is error, error recovery or exit;
24 }
25 } else {
26 is error, do error recovery;
27 }
28 }

 In Algorithm 1, a state stack is used to keep track of

the current status of traversing the state machine. The

parameter ‘S’ or current state is the state on the top of the

2 LHS – Left Hand Side, RHS – Right Hand Side.

 LR(0) Knuth LR(1)

PGM

LR(1)

LT LALR(1)

LT LR(1)

w/ LTT

D
ata F

lo
w

LT LR(1)

w/ PGM

LR(k)

UPE
UPE Ext

PGM LR(1)

Knuth LR(1)

LT LR(1) w/ PGM LT LR(1) w/ LTT

LR(k)

LT LALR(1)

LR(0)

state stack. The parameter ‘L’ or lookahead is the symbol

used to decide the next action from the current state. The

parameter ‘A’ or action is the action to take, and is found by

checking the parsing table entry (S, L). ‘�’ denotes

assignment operation. This parse engine is similar to the

one used in Yacc, but there are variation in the details, such

as the storage parsing table, as discussed in the next section.

TABLE 1. STORAGE ARRAYS FOR THE PARSING MACHINE IN HYACC

PARSE ENGINE.

Array name Explanation

yyfs[] List the default reduction for each state. If a state

has no default reduction, its entry is 0.

Array size = n.

yyrowoffset[] The offset of parsing table rows in arrays

yyptblact[] and yyptbltok[]. Array size = n.

yyptblact[] Destination state of an action (shift/goto/reduce/

accept).

If yyptblact[i] is positive, action is ‘shift/goto’,

If yyptblact[i] is negative, action is ‘reduce’,

If yyptblact[i] is 0, action is ‘accept’.

If yyptblact[i] is -10000000, labels array end.

Array size = p.

yyptbltok[] The token for an action.

If yyptbltok[i] is positive, token is terminal,

If yyptbltok[i] is negative, token is non-terminal.

If yyptbltok[i] is -10000001, is place holder for

a row.

If yyptbltok[i] is -10000000, labels array end.

Array size = p.

yyr1[] If the LHS symbol of rule i is a non-terminal,

and its index among non-terminals (in the order

of appearance in the grammar rules) is x, then

yyr1[i] = -x. If the LHS symbol of rule i is a

terminal and its token value is t, then yyr1[i] = t.

Note yyr1[0] is a placeholder and not used.

Note this is different from yyr1[] of Yacc or

Bison, which only have non-terminals on the

LHS of its rules, so the LHS symbol is always a

non-terminal, and yyr1[i] = x, where x is defined

the same as above.

Array size = r.

yyr2[] Same as Yacc yyr2[]. Let x[i] be the number of

RHS symbols of rule i, then yyr2[i] = x[i] << 1

+ y[i], where y[i] = 1 if production i has

associated semantic code, y[i] = 0 otherwise.

Note yyr2[0] is a placeholder and not used.

This array is used to generate semantic actions.

Array size = r.

yynts[] List of non-terminals.

This is used only in debug mode.

Array size = number of non-terminals + 1.

yytoks[] List of tokens (terminals).

This is used only in debug mode.

Array size = number of terminals + 1.

yyreds[] List of the reductions.

Note this does not include the augmented rule.

This is used only in debug mode.

Array size = r.

2.4 Storing the Parsing Table

2.4.1 Storage tables

 The following describes the arrays that are used in

hyaccpar to store the parsing table.

 Let the parsing table have n rows (states) and m

columns (number of terminals and non-terminals). Assuming

there are r rules (including the augmented rule), and the

number of non-empty entries in the parsing table is p. Table

1 lists all the storage arrays and explains their usage.

2.4.2 Complexity

 Suppose in state i there is a token j, we can find if an

action exists by looking at the yyptbltok table from

yyptbltok[yyrowoffset[i]] to yyptbltok[yyrowoffset[i+1]-1]:

i) If yyptbltok[k] == j, yyptblact[k] is the associated action;

ii) If yyptblact[k] > 0, this is a ‘shift/goto’ action;

iii) If yyptblact[k] < 0, is a reduction, then use yyr1 and yyr2

to find number of states to pop and the next state to goto;

iv) If yyptblact[k] == 0 then it is an ‘accept’ action, which is

valid when j is the end of an input string.

 The space used by the storage is: 2n + 2p + 3r + (m +

2). In most cases the parsing table is a sparse matrix. In

general, 2n + 2p + 3r + (m + 2) < n*m.

 For the time used, the main factor is when searching

through the yyptbltok array from yyptbltok[yyrowoffset[i]]

to yyptbltok[yyrowoffset[i+1]-1]. Now it is linear search and

takes O(n) time. This can be made faster by binary search,

which is possible if terminals and non-terminals are sorted

alphabetically. Then time complexity will be O(ln(n)). It can

be made such that time complexity is O(1), by using the

double displacement method which stores the entire row of

each state. That would require more space though.

2.4.3 Example

 An example is given to demonstrate the use of these

arrays to represent the parsing table. Given grammar G1:

 E � E + T | T

 T � T * a | a

 The parsing table is shown in Table 2. Here the parsing

table has n = 8 rows, m = 6 columns, and r = 5 rules

(including the augmented rule). The actual storage arrays in

the hyaccpar parse engine are shown in Table 3.

 Array yyfs[] lists the default reduction for each state:

state 3 has default reduction on rule 4, and state 7 has

default reduction on rule 3.

 Array yyrowoffset[] defines the offset of parsing table

rows in arrays yyptblact[] and yyptbltok[]. E.g., row 1 starts

at offset 0, row 2 starts at offset 3.

 Array yyptblact[] is the destination state of an action.

The first entry is 97, which can be seen in the yytoks[] array.

The second entry is 1, which stands for non-terminal E. And

as we see in the parsing table, entry (0, a) has action s3,

entry (0, E) has action g1, thus in yyptblact[] we see

correspondingly the first entry is 3, and the second entry is

1. Entry -10000000 in both yyptblact[] and yyptbltok[]

labels the end of the array. Entry 0 in yyptblact[] labels the

accept action. Entry 0 in yyptbltok[] stands for the token end

marker $. Entry -10000001 in yyptbltok[] labels that this

state (row in parsing table) has no other actions but the

default reduction. -10000001 is just a dummy value that is

never used, and servers as a place holder so yyrowoffset[]

can have a corresponding value for this row.

 Entries of array yyr1[] and array yyr2[] are defined as

in Table 1, and it is easy to see the correspondence of the

values.

2.5 Handling Precedence and Associativity

 The way that Hyacc handles precedence and

associativity is the same as Yacc and Bison. By default, in a

shift/reduce conflict, shift is chosen; in a reduce/reduce

conflict, the reduction whose rule appears first in the

grammar is chosen. But this may not be what the user wants.

So %left, %right and %nonassoc are used to declare tokens

and specify customized precedence and associativity.

2.6 Error Handling

 Error handling is the same as in Yacc. There have been

abundant complaints about the error recovery scheme of

Yacc. We are concentrating on LR(1) algorithms instead of

better error recovery. Also we want to keep compatible with

Yacc and Bison. For these reasons we keep the way that

Yacc handles errors.

2.7 Data Structures

 A symbol table is implemented by hash table, and uses

open-chaining to store elements in a linked list at each

bucket. The symbol table is used to achieve O(1)

performance for many operations. All the symbols used in

the grammar are stored as a node in this symbol table. Each

node also contains other information about each symbol.

Such information are calculated at the time of parsing the

grammar file and stored for later use.

TABLE 2. PARSING TABLE FOR GRAMMAR G1

State $ + * a E T

0 0 0 0 s3 g1 g2

1 a0 s4 0 0 0 0

2 r2 r2 s5 0 0 0

3 r4 r4 r4 0 0 0

4 0 0 0 s3 0 g6

5 0 0 0 s7 0 0

6 r1 r1 s5 0 0 0

7 r3 r3 r3 0 0 0

TABLE 3. STORAGE TABLES IN HYACC LR(1) PARSE ENGINE

FOR GRAMMAR G1

#define YYCONST const
typedef int yytabelem;

static YYCONST yytabelem yyfs[] = {0, 0,
0, -4, 0, 0, 0, -3};

static YYCONST yytabelem yyptbltok[] = {
97, -1, -2, 0, 43, 0, 43, 42, -10000001, 97,
-2, 97, 0, 43, 42, -10000001, -10000000};

static YYCONST yytabelem yyptblact[] = {
3, 1, 2, 0, 4, -2, -2, 5, -4, 3,
6, 7, -1, -1, 5, -3, -10000000};

static YYCONST yytabelem yyrowoffset[] = {
0, 3, 5, 8, 9, 11, 12, 15, 16};

static YYCONST yytabelem yyr1[] = {
 0, -1, -1, -2, -2};
static YYCONST yytabelem yyr2[] = {
 0, 6, 2, 6, 2};

#ifdef YYDEBUG

typedef struct {char *t_name; int t_val;}
yytoktype;

yytoktype yynts[] = {
 "E", -1,
 "T", -2,
 "-unknown-", 1 /* ends search */
};
yytoktype yytoks[] = {
 "a", 97,
 "+", 43,
 "*", 42,
 "-unknown-", -1 /* ends search */
};
char * yyreds[] = {
 "-no such reduction-"
 "E : 'E' '+' 'T'",
 "E : 'T'",
 "T : 'T' '*' 'a'",
 "T : 'a'",
};
#endif /* YYDEBUG */

 Linked list, static arrays, dynamic arrays and hash

tables are used where appropriate. Sometimes multiple data

structures are used for the same object, and which one to use

depends on the particular circumstance.

 In the parsing table, the rows index the states (e.g., row

1 represents actions of state 1), and the columns stand for

the lookahead symbols (both terminals and non-terminals)

upon which shift/goto/reduce/accept actions take place. The

parsing table is implemented as a one dimensional integer

array. Each entry [row, col] is accessed as entry [row *

column size + col]. In the parsing table positive numbers are

for ‘shift’, negative numbers are for ‘reduce’, -10000000 is

for ‘accept’ and 0 is for ‘error’.

 There is no size limit for any data structures. They can

grow until they consume all the memory. However, Hyacc

artificially sets an upper limit of 512 characters for the

maximal length of a symbol.

2.8 Performance

 The performance of Hyacc is compared to other LR(1)

parser generators. Menhir [11] and MSTA [12] are both

very efficiently and robustly implemented. Table 4 and

Table 5 show the running time comparison of the three

parser generators on C++ and C grammars. The speeds are

similar. MSTA, implemented in C++, is a handy choice for

industry users. It does not use reduced-space LR(1)

algorithms though, thus always results in larger parsing

machines. Menhir uses Pager’s PGM algorithm, but is

implemented in Caml, which is not so popular in industry.

Therefore Hyacc should be a favorable choice.

TABLE 4. RUNNING TIME (SEC) COMPARISON OF MENHIR, MSTA AND

HYACC ON C++ GRAMMAR.

 Knuth LR(1) PG MLR(1) LALR(1)

Menhir 1.97 1.48 N/A

MSTA 5.32 N/A 1.17

Hyacc 3.53 1.78 1.10

TABLE 5. RUNNING TIME (SEC) COMPARISON OF MENHIR, MSTA AND

HYACC ON C GRAMMAR.

 Knuth LR(1) PG MLR(1) LALR(1)

Menhir 1.64 0.56 N/A

MSTA 0.92 N/A 0.13

Hyacc 1.05 0.42 0.19

2.9 Usage

 From the sourceforge.net homepage of Hyacc [7] a

user can download the source packages for unix/linux and

windows, and the binary package for windows. All the

instructions on installation and usage are available in the

included readme file. It is very easy to use, especially for

users familiar with Yacc and/or Bison.

 Hyacc is a command line utility. To start hyacc, use:

“hyacc input_file.y [-bcCdDghKlmnoOPQRStvV]”. The

input grammar file input_file.y has the same format as those

used by Yacc/Bison.

 The meanings of some of the command line switches

are briefly introduced here. ‘-b’ specifies the prefix to use

for all hyacc output file names. The default is y.tab.c as in

Yacc. If ‘-c’ is specified, no parser files (y.tab.c and y.tab.h)

will be generated. This is used when the user only wants to

use the -v and -D options to parse the grammar and check

the y.output log file. ‘-D’ is used with a number from 0 to 15

(e.g., -D7) to specify the details to be included into the

y.output log file during the parser generation process. ‘-g’

says that a Graphviz input file should be generated. ‘-S’

means to apply LR(0) algorithm. ‘-R’ applies LALR(1)

algorithm. ‘-Oi’ where i = 0 to 3 applies the Knuth canonical

algorithm and the practical general method with different

optimizations. ‘-P’ applies the lane-tracing algorithm based

on the practical general method. ‘-Q’ applies the lane-tracing

algorithm based on the lane table method. ‘-K’ applies the

LR(k) algorithm. ‘-m’ shows man page.

 For more usage of the Hyacc parser generator,

interested users can refer to the Hyacc usage manual.

3 Related Work

 Pager’s practical general method has been

implemented in some other parser generators. Some

examples are LR (1979, in Fortran 66, at Lawrence

Livermore National Laboratory) [13], LRSYS (1985, in

Pascal, at Lawrence Livermore National Laboratory) [14],

LALR (1988, in MACRO-11 under RSX-11) [15], Menhir

(2004, in Caml) [11] and the Python Parsing module (2007,

in Python) [16].

 The lane-tracing algorithm was implemented by Pager

(1970s, in Assembly under OS 360) [3]. But no other

available implementation is known.

 For other LR(1) parser generators, the Muskox parser

generator (1994) [17] implemented Spector’s LR(1)

algorithm [18][19]. MSTA (2002) [12] took a splitting

approach but the detail is unknown. Commercial products

include Yacc++ (LR(1) was added around 1990, using

splitting approach loosely based on Spector’s algorithm)

[20][21] and Dr. Parse (detail unknown) [22]. Most recently

an IELR(1) algorithm [23][24] was proposed to provide

LR(1) solution to non-LR(1) grammars with specifications

to solve conflicts, and the authors implemented this as an

extension of Bison.

4 Conclusions

 In this work we investigated LR(1) parser generation

algorithms and implemented a parser generator Hyacc,

which supports LR(0)/LALR(1)/LR(1) and partial LR(k). It

has been released to the open source community. The usage

of Hyacc is highly similar to the widely used LALR(1)

parser generators Yacc and Bison, which makes it easy to

learn and use. Hyacc is unique in its wide span of algorithms

coverage, efficiency, portability, usability and availability.

5 References

[1] Donald E. Knuth. On the translation of languages from

left to right. Information and Control, 8(6):607 – 639, 1965.

[2] David Pager. The lane tracing algorithm for

constructing LR(k) parsers. In Proceedings of the fifth

annual ACM symposium on Theory of computing, pages

172 – 181, Austin, Texas, United States, 1973.

[3] David Pager. The lane-tracing algorithm for

constructing LR(k) parsers and ways of enhancing its

efficiency. Information Sciences, 12:19 – 42,

[4] David Pager. A practical general method for

constructing LR(k) parsers. Acta Informatica, 7:249 – 268,

1977.

[5] Xin Chen. Measuring and Extending LR(1) Parser

Generation. PhD thesis, University of Hawaii, August 2009.

[6] David Pager. Eliminating unit productions from LR

parsers. Acta Informatics, 9:31 – 59, 1977.

[7] Xin Chen. LR(1) Parser Generator Hyacc, January

2008. http://hyacc.sourceforge.net.

[8] Charles Donnelly, Richard Stallman. Bison, The

YACC-compatible Parser generator (for Bison Version

1.23), 1993.

[9] Charles Donnelly, Richard Stallman. Bison, The

YACC-compatible Parser generator (for Bison Version

1.24), 1995.

[10] David Pager. The Lane Table Method Of Constructing

LR(1) Parsers. Technical Report No. ICS2009-06-02,

University of Hawaii, Information and Computer Sciences

Department, 2008. http://www.ics.hawaii.edu/research/tech-

reports/LaneTableMethod.pdf/view

[11] Francois Pottier and Yann Regis-Gianas. Parser

Generator Menhir, 2004.

http://cristal.inria.fr/~fpottier/menhir/

[12] Vladimir Makarov. Toolset COCOM & scripting

language DINO, 2002.

http://sourceforge.net/projects/cocom

[13] Charles Wetherell and A. Shannon. LR automatic

parser generator and LR(1) parser. Technical Report UCRL-

82926 Preprint, July 1979.

[14] LRSYS, 1991.

http://www.nea.fr/abs/html/nesc9721.html

[15] Algirdas Pakstas, 1992.

http://compilers.iecc.com/comparch/article/92-08-109

[16] Parser Generator Parsing.py: An LR(1) parser

generator with CFSM/GLR drivers, 2007.

http://compilers.iecc.com/comparch/article/07-03-076

[17] Boris Burshteyn. MUSKOX Algorithms, 1994.

http://compilers.iecc.com/comparch/article/94-03-067

[18] David Spector. Full LR(1) parser generation. ACM

SIGPLAN Notices, p.58 – 66, 1981.

[19] David Spector. Efficient full LR(1) parser generation.

ACM SIGPLAN Notices, 23(12):143 – 150, 1988.

[20] Yacc++ and the Language Objects Library, 1997 –

2004. http://world.std.com/~compres

[21] Chris Clark, 2005.

http://compilers.iecc.com/comparch/article/05-06-124

[22] Parser Generator Dr. Parse.

http://www.downloadatoz.com/software-

development_directory/dr-parse

[23] Joel E. Denny, Brian A. Malloy. IELR(1): practical

LR(1) parser tables for non-LR(1) grammars with conflict

resolution. Proceedings of the 2008 ACM symposium on

Applied computing, p.240 – 245, 2008.

[24] Joel E. Denny, Brian A. Malloy, The IELR(1)

algorithm for generating minimal LR(1) parser tables for

non-LR(1) grammars with conflict resolution, Science of

Computer Programming, v.75 n.11, p.943 – 979, November,

2010.

